Supplementary file 1

Figure S1. Triangular (A), beta (B) or logit-logistic (C) distributions of specificity and sensitivity.

$$
\left[\begin{array}{cc}
\text { Sen } & 1-\text { Spee } \\
1-\text { Sen } & \text { Spe }
\end{array}\right]\left[\begin{array}{l}
A \\
B
\end{array}\right]=\left[\begin{array}{c}
A^{*} \\
B^{*}
\end{array}\right]
$$

The matrix equation presented above illustrates that the observed values in the case group $\left(\left[\begin{array}{c}A^{*} \\ B^{*}\end{array}\right]\right)$ are equal to the result of multiplying the sensitivity/specificity matrix $\left(\left[\begin{array}{cc}\text { Sen } & 1-S p e \\ 1-S e n & \text { Spe }\end{array}\right]\right)$ by the value of expected exposure in the case group $\left(\left[\begin{array}{l}A \\ B\end{array}\right]\right.$. The equation can be rearranged as follows:

$$
\left[\begin{array}{c}
A \\
B
\end{array}\right]=\left[\begin{array}{c}
A^{*} \\
B^{*}
\end{array}\right]\left[\begin{array}{cc}
\text { Sen } & 1-\text { Spe } \\
1-\text { Sen } & \text { Spe }
\end{array}\right]^{-1}
$$

Which can be rewritten according to matrix rules:

$$
\left[\begin{array}{c}
A \\
B
\end{array}\right]=\left[\begin{array}{cc}
\frac{\text { Spe }}{\text { Sen }+ \text { Spe }-1} & \frac{\text { Spe }-1}{\text { Sen }+ \text { Spe }-1} \\
\frac{S e n ~}{}-1 & \frac{S e n}{\text { Sen }+ \text { Spe }-1}
\end{array}\right]\left[\begin{array}{c}
A^{*} \\
B^{*}
\end{array}\right]
$$

Therefore, A and B would be calculated using the following formulas:

$$
\begin{aligned}
& A=\frac{\text { Spe }}{\text { Sen }+ \text { Spe }-1} \times A^{*}+\frac{\text { Spe }-1}{\text { Sen }+S p e-1} \times B^{*} \\
& B=\frac{\operatorname{Sen}-1}{\operatorname{Sen}+\operatorname{Spe}-1} \times A^{*}+\frac{S e n}{\text { Sen }+ \text { Spe }-1} \times B^{*}
\end{aligned}
$$

The above calculations should be done for the control group, too.

Then, the positive predictive value (PPV) and negative predictive value (NPV) will be calculated using the following formulas:

$$
\begin{aligned}
& \mathrm{PPV}=\frac{\operatorname{Sen} \times A}{(\operatorname{Sen} \times A)+((1-\operatorname{Spe}) \times B)} \\
& \mathrm{NPV}=\frac{\operatorname{Spe} \times B}{(\operatorname{Spe} \times B)+((1-\operatorname{Sen}) \times A)}
\end{aligned}
$$

