
Archives of Iranian Medicine, Volume 16, Number 12, December 2013 705

Introduction

I t is believed that persistence of H.pylori despite the hostile 
gastric environment and antibiotic therapy may be due to ex-
istence of an ecological niche inside the human epithelial 

cells.1–3 Reports describe that H.pylori is capable of invading eu-
karyotic cells and establishing inside their vacuoles.3–5 Many in-
vestigations on human gastric biopsies, using different staining 
and microscopic techniques have described the internalization of 
H.pylori inside epithelial cells6,7 and immunocytes.8–10 Internaliza-
tion of H.pylori has also been reported in cultured cell lines4,11,12 
where the intracellular spiral or coccoid forms were observed 

4 Inside 
the vacuole, the bacteria exhibited directional movements 13 and 

14 In 

nature, many pathogenic bacteria persist in stressful conditions by 
residing inside eukaryotic microorganisms. The intracellular life 

-
nomenon which has led to the adaptation of prokaryotes to a wide 
range of environmental niches. However, elucidating the details 
of this relationship has been hampered due to non-culturability of 
most endosymbiotic bacteria.15

In our previous studies, we demonstrated the endosymbiotic 
relationship of non-culturable H.pylori with oral and gastric 
Candida
H.pylori 16,17 
The presence of H.pylori
oral and gastric Candida yeasts detected by western blotting and 
IgY-Hp revealed that the H.pylori residing inside the vacuole of 
yeast produces proteins and is viable18 In this study, we investi-
gated the intracellular localization of H.pylori inside the vacuole 
of a Candida
using  (FITC)-labled polyclonal anti-H.
pylori egg yolk immunoglobulin Y (IgY-Hp) which was raised 
in H.pylori dot and 
western blotting. The presence of live intracellular H.pylori inside 
the vacuole of new generations of yeast cells was also examined 

latter case with Live/
Dead BacLight staining method.
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H.pylori

Materials and Methods

Yeast and bacterial strains
One yeast was isolated from a gastric biopsy which was cultured 

on the selective Brucella blood agar (without amphotericin B) for 
isolation of H.pylori. The recruited patient was a female, aged 54 
years, with gastric ulcer. The gastric biopsy culture was positive 
for H.pylori and yeast after 3 days of microaerobic incubation at 
37°C. H.pylori microscopic observation 
of Gram negative spiral bacteria and the positive results of cata-
lase, oxidase and urease tests. The identity of bacteria as H.pylori 

16S rRNA, vacA s1, ureAB, 
and ahpC genes and sequencing of the PCR product of 16S rRNA 
gene. This H.pylori strain was used for preparation of IgY-Hp and 
as a  
as Candida based on microscopic oval morphology and formation 
of blastoconidia on Subouraud dextrose agar. The Candida yeast 
was further Candida spp. based on its interaction on 
Chromagar (CHROMagar, France) and production of white-pink 
colonies. It was nominated as G2 yeast.

Preparation of FITC-conjugated IgY-Hp
The reference H.pylori was suspended in normal saline with the 

turbidity of McFarland standard 3, heat-killed and its protein con-
tent was measured as 200 μg/mL.  A 500-μL volume of whole cell 
lysate was mixed with complete Freund’s adjuvant and injected 
into two Leghorn hens intramuscularly. After two booster injec-
tions at two-week intervals, IgY-Hp was extracted from collected 
eggs according to Nikbakht.19 Dot blotting was performed to 

IgY-Hp with H.pylori
proteins18 IgY-Hp was conjugated with FITC as described previ-
ously.20 In brief, extracted IgY-Hp was dialyzed overnight against 
the carbonate/bicarbonate buffer. The protein content of antibody 
was measured by spectrophotometer and diluted to 10mg/mL 
with carbonate buffer 0.5M (pH 9.1). A 100-μL volume of FITC 
solution (1mg/mL in DMSO) was added to the antibody, mixed 
thoroughly and incubated in dark and at room temperature for 2 
hr. To remove the unbound FITC, the mixture was passed through 
a Sephadex G-25 column equilibrated with the phosphate-buff-
ered saline (PBS 1X).

Figure 1. A)
vacuole show the intracellular localization of H.pylori. B) -

H.pylori (arrows). C) Heat-killed G2 yeast.
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Detection of H.pylori -
rescence assay

This method was designed to identify the target H.pylori inside 
yeast vacuole. The fast-moving H.pylori cells observed inside the 
vacuole of G2 yeast had H.pylori by 

16S rRNA, vacA, ureAB, and ahpC genes from 
the whole DNA of yeast and observing 100% sequence homology 

 products of 16S rRNA from the G2 yeast 
and the control H.pylori and those of the reference strains in Gen-
bank.18 A 100-μL medium containing yeast extract (5 g/L) and 
N-acetylglucoseamine (20 g/L) supplemented with equal volume 
of fetal bovine serum (Invitrogen, USA) was inoculated with a 
single colony of G2 yeast and incubated at 37°C for 12 hr. A 20-
μL volume of 1:5 dilution of FITC-conjugated IgY-Hp was added 
and vortexed. A 5-μL volume of Evans blue solution (0.01% in 
PBS) was added to create color contrast. The mixture was incu-
bated at 37°C for 3 hr while shaking at 200 rpm. A 10-μL volume 
of the yeast culture was smeared on a glass slide and air-dried. To 
remove unbound antibodies, slides were washed with PBS while 
shaken gently. Samples were covered with mounting medium and 
examined by -
trols included fresh culture of H.pylori and heat-killed G2 yeast, 
respectively.

G2 yeast was subcultured on yeast extract glucose chloramphen-
icol agar for more than 10 times to ensure the absence of bacterial 
contamination. A wet mount was prepared from fresh culture of 
yeast and examined by light microscopy to observe intracellular 
H.pylori inside the vacuoles of mother and daughter yeast cells. 
Photographs were taken from fast-moving intravacuolar H.pylori 
cells at 6 time intervals. Fluorescent microscopy and Live/Dead 
BacLight Bacterial Viability kit (Invitrogen, USA) were used to 
reveal the viability of the intravacuolar H.pylori, according to 
manufacturer´s instructions. Photographs were taken from live 

(green) and fast-moving H.pylori cells in the vacuoles of mother 
and daughter yeast cells at 3 time intervals.

Results

Detection of H.pylori -
cence assay

-
rial cells inside the vacuole of G2 yeast cells, showing that FITC-

H.pylori inside the 
vacuole of yeast (Figure 1A). FITC-conjugated IgY-Hp also spe-

H.pylori cells (Figure 1B). No reaction 
was observed in heat-killed G2 yeast (Figure 1C). 

 yeast cells showed fast-
moving and live H.pylori cells inside the vacuole of yeast cells. 
H.pylori cells could be observed in yeast vacuoles after many sub-
cultures. H.pylori cells were present inside the vacuoles (V) of 
mother (M) as well as daughter (D) yeast cells (Figures 2 and 3).

Discussion

Egg yolk antibodies have been used as 
tools in many diagnostic and biomarker discovery applications.21 It 
has been demonstrated that IgY-Hp strongly reacts with H.pylori-

for effective inhibition or de-
tection of H.pylori.22 IgY-Hp inhibited attachment of H.pylori to 
cultured cells, the bacterial growth in vitro and its urease activity. 
It also decreased H.pylori-induced lymphocyte and neutrophil in-

mucosal injury.22 Furthermore, IgY-Hp strongly 
reacted with immunodominant proteins of H.pylori, including 
Hsp 60, urease, peroxiredoxin and thiol peroxidase.22 In our pre-
vious study, IgY-Hp was used for detection of H.pylori
proteins; vacuolating cytotoxin A (VacA), Urease, peroiredoxin, 

Figure 2. Light microscopy of the G2 yeast. Fast-moving intracellular H.pylori cells are demonstrated inside the vacuoles (V) of 
mother (M) and daughter (D) yeast cells. Photographs were taken at 6 time intervals (0, 2, 4, 6, 8, and 10 seconds). Original mag-
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H.pylori

and thiol peroxidase in the protein pool of Candida yeast by west-
ern blotting 18

In this 
FITC-conjugated IgY-Hp demonstrated the entry of conjugated 
antibody into yeast H.pylori, 
thus verifying the presence of H.pylori inside the yeast vacuole. 
FITC  
and brightens when the pH is neutralized.24 Accordingly, one rea-
son for observing some yeast cells with dark vacuoles could be 
the acidic pH of the vacuoles. Whole cell H.pylori and H.pylori-
immunopositive materials were found in the lamina propria of 
stained gastric biopsies.25 Electron microscopy observations on 

H.pylori  antibod-
ies revealed the intracellular occurrence of H.pylori inside the 
epithelial cells.26 Confocal microscopy of immunohistochemistry 

in situ hybridization preparations of cultured 
cells8 as well as ultrastructural studies on cultured cells stained 
with immunogoldcytochemistry9 revealed the
H.pylori and its intracellular localization. The intracellular bacte-
ria were viable because they could express H.pylori mRNA and 
antigens and maintained their morphology.8,9 By observing the 
multiplication of H.pylori inside the cultured epithelial cells, it 

was proposed that the intracellular niche could provide nutrients 
for the slow-growing bacterium and protect it against the hostile 
gastric environment, host immune system and the antibacterial 
therapy.1

Reports indicate that like many intracellular bacteria, H.pylori 
is well-equipped with peroxidases to detoxify oxygen metabo-
lites formed, e.g., during the respiratory burst of immune cells.27 
Furthermore, the bacterial urease and VacA have been recognized 
as two important H.pylori
phago-lysosome fusion and bacterial survival in macrophages.28,29 
In our previous study, detection of H.pylori -
oxiredoxin, thiol peroxidase, urease, and VacA in yeast indicated 
that inside the yeast vacuole, H.pylori produces these proteins to 
stay alive.18 These reports support the results of the present study 
which proposes that H.pylori has evolved to equip itself  to invade 
eukaryotic cells and establish inside their vacuole.3–5 

Reports describe that fungal vacuole is an acidic storage com-
partment with certain similarities to plant vacuoles and mamma-
lian lysosomes. It is the storage site of essential nutrients includ-
ing Ca2+, phosphate and amino acids.30,31 A considerable amount 
of ergosterol is also found in the membrane of vacuoles.32 Vacuole 
receives membranes from biosynthetic, endocytotic and autopha-

Figure 3. Three selected views of live H.pylori H.pylori 
cells are demonstrated inside the vacuoles (V) of mother (M) and daughter (D) yeast cells. Photographs (A, B, and C) were taken at 3 time intervals (0, 
2 and 4 seconds). Arrow head shows a moving H.pylori
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gic pathways of the cell.33 It is noteworthy that members of the 
genus Helicobacter incorporate a large amount of ergosterol in 
the bacterial cell membrane as their unique property.34 H.pylori er-
gosterol content exceeds 70% of cellular neutral lipids in contrast 
to E.coli which accumulates only 17%.35 It has been proposed 
that dependence of H.pylori on ergosterol could have developed 
alongside the symbiotic association of bacterium with eukaryotic 
hosts.34 Accordingly, yeast vacuoles can be considered a unique 
and specialized niche for accommodation of H.pylori. 

The viability of intracellular H.pylori was determined when fast-
moving H.pylori cells were stained green with BacLight bacterial 
viability kit. The nonculturable H.pylori cells were observed in-
side the vacuole of mother as well as daughter yeast cells, indicat-
ing that the bacterial cells were present in the next generations of 
yeasts after several subcultures. Vertical transmission of noncul-
turable intracellular bacteria has been reported in animals36 and 
fungi.37 Studies on Arbuscular Mycorrhizal fungi have revealed 
that like other prokaryotic-eukaryotic endosymbioses, fugal endo-
bacteria are localized inside the membrane-bound vacuole.38 The 
intracellular bacteria have been observed in the vacuole or cyto-
plasm of AM fungi by light and electron  microscopy38,39 as well 

40 microscopy. Furthermore, their identity 
as Candidatus Glomeribacter gigasporarum was determined by 
detection of bacterial 16SrRNA gene. 38,41 These reports suggest 
that fungal vacuole provides a nourishing and protective niche for 
the endosymbiotic bacterium, facilitating its replication and trans-
mission to the next generation.37

The results of this study show the intracellular localization of 
H.pylori inside the vacuole of Candida yeast. The fast-moving in-
tracellular H.pylori cells were viable and present in the new gen-
erations of yeast cells. It appears that, like many invasive patho-
gens,42 H.pylori has developed strategies to protect its membrane-
bound vacuole by disrupting normal endosomal maturation and 
fusion with lysosome, promoting intracellular survival thereby 
maintaining symbiotic relationship with its eukaryotic host. This 
mutual adaptation of intracellular bacteria and their eukaryotic 
hosts is so intimate that would often allow both partners to survive 
the entire lifespan and the intracellular bacterium is transmitted 
to the next generation as an integral part of its host system.38,43 
The intracellular occurrence of H.pylori inside the candida yeast, 
while describing an
symbiotic relationship between prokaryotes and eukaryotes, it 
could have a great impact on the persistence of H.pylori against 
stressful conditions, including antibacterial therapy.
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